Ecological Discount Rate and Precautionary Principle

Olivier Guéant

Chair Finance and Sustainable Development - Dauphine/X/EDF/Calyon/CDC

Wednesday, January 27th, 2010
Motivations

Two related questions:

What is the relevant discount rate for environmental issues?
Motivations

Two related questions:

What is the relevant discount rate for environmental issues?

- Main question for cost-benefit analysis (Stern Review).
- Long term horizon.
- Theoretical point: substitutability between consumption good and the environment.
- Output: Micro-foundation of low discount rates.
Motivations

Two related questions:

- What is the relevant discount rate for environmental issues?
 - Main question for cost-benefit analysis (Stern Review).
 - Long term horizon.
 - Theoretical point: substitutability between consumption good and the environment.
 - Output: Micro-foundation of low discount rates.

Precautionary principle

Underlying ideas

- Weak PP
- Strong PP
Motivations

Two related questions:

What is the relevant discount rate for environmental issues?
- Main question for cost-benefit analysis (Stern Review).
- Long term horizon.
- Theoretical point: substitutability between consumption good and the environment.
- Output: Micro-foundation of low discount rates.

Precautionary principle
- How to justify a precautionary principle?
- What risk really is? Ignorance of events or ignorance of their impact on welfare?
The framework is rooted to a seminal article by R. Guesnerie:
The framework is rooted to a seminal article by R. Guesnerie:

The framework is rooted to a seminal article by R. Guesnerie:

Similar models used to address related questions:
The framework is rooted to a seminal article by R. Guesnerie:

Similar models used to address related questions:

Similar models used to address related questions:
Introduction

1. The model
 - Setup of the model
 - Discount rates
 - Optimization problem

2. Results

3. Precautionary principle
In a nutshell

A two-good model

- A consumption good (with no limitation): x
- An environmental good (available in finite quantity): y
In a nutshell

A two-good model

- A consumption good (with no limitation): \(x \)
- An environmental good (available in finite quantity): \(y \)

A four-parameter model
A two-good model

- A consumption good (with no limitation): x
- An environmental good (available in finite quantity): y

A four-parameter model

- δ: pure rate of time-preference.
A two-good model
- A consumption good (with no limitation): x
- An environmental good (available in finite quantity): y

A four-parameter model
- δ: pure rate of time-preference.
- r: (financial) interest rate.
A two-good model

- A consumption good (with no limitation): x
- An environmental good (available in finite quantity): y

A four-parameter model

- δ: pure rate of time-preference.
- r: (financial) interest rate.
- σ: elasticity of substitution between the two goods.
In a nutshell

A two-good model
- A consumption good (with no limitation): x
- An environmental good (available in finite quantity): y

A four-parameter model
- δ: pure rate of time-preference.
- r: (financial) interest rate.
- σ: elasticity of substitution between the two goods.
- σ': (inverse) inter-temporal elasticity of substitution.
Some more details

CES ordinal utility function

\[
v(x_t, y_t) = \left[\frac{1}{\sigma} x_t^{\sigma-1} + y_t^{\sigma-1} \right]^{\frac{\sigma}{\sigma-1}}
\]
Some more details

CES ordinal utility function

\[v(x_t, y_t) = \left[x_t^{\frac{\sigma-1}{\sigma}} + y_t^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}} \]

Cardinal utility

\[V(x_t, y_t) = \frac{1}{1 - \sigma'} v(x_t, y_t)^{1-\sigma'} \]
Some more details

CES ordinal utility function

\[v(x_t, y_t) = \left[\frac{\sigma - 1}{\sigma} x_t^\sigma + \frac{\sigma - 1}{\sigma} y_t^\sigma \right]^{\frac{\sigma}{\sigma - 1}} \]

Cardinal utility

\[V(x_t, y_t) = \frac{1}{1 - \sigma'} v(x_t, y_t)^{1 - \sigma'} \]

Welfare function

\[\sum_{t=0}^{\infty} e^{-\delta t} V(x_t, y_t) \]

\(x_t \) has to be paid for. \(y_t \) is free but available in limited quantity.
Notion of discount rates I

We consider a reference trajectory \((x_t, \bar{y})\)

Implicit discount rate (private good)

The implicit discount rate for private good between periods \(t\) and \(t + 1\), is \(r_t^*\) such that Euler condition is satisfied:

\[
e^{-r_t^*} = e^{-\delta} \frac{\partial_1 V(x_{t+1}, \bar{y})}{\partial_1 V(x_t, \bar{y})}
\]

We introduce:

\[
R^*(T) = \frac{1}{T} \sum_{t=0}^{T-1} r_t^*
\]
Similarly, the ecological implicit discount rate between two consecutive periods is β_t^* defined by:

$$e^{-\beta_t^*} = e^{-\delta} \frac{\partial^2 V(x_{t+1}, \bar{y})}{\partial^2 V(x_t, \bar{y})}$$

and we denote:

$$B^*(T) = \frac{1}{T} \sum_{t=0}^{T-1} \beta_t^*$$

Remark: A cross discount rate will be dealt with further on.
The link between β_t^* and r_t^* depends on consumption growth. Easy computations lead to:

$$\beta_t^* = r_t^* - g_t^*/\sigma$$

- If the interest rate is given (r), the ecological discount rate is lesser than r.
- The more you grow, the more you “need” environmental goods when t is large.
- We see the role of substitutability between the two goods (σ).

Now, we need to make the growth path endogenous...
A representative agent or a social planner has the following optimization problem:
A representative agent or a social planner has the following optimization problem:

$$\sum_{t=0}^{\infty} e^{-\delta t} V(x_t, y_t)$$

subject to:

$$\alpha_{t+1} = e^r (\alpha_t - x_t) \quad y_t \leq \bar{y}$$

where α stands for wealth and α_0 is given.

We have to...

- find the consumption path...
- deduce the growth path...
- conclude on the ecological discount rates:
 - Asymptotic results.
 - Finite-time results.
Introduction

Motivations

Framework

The model

Setup of the model

Discount rates

Optimization problem

Results

Asymptotic results

Non-asymptotic results

Poor/Rich countries

Precautionary principle

Underlying ideas

Weak PP

Strong PP
Asymptotic results
Asymptotic results

Asymptotic growth rate

- $\sigma < 1$: $g^* = \sigma (r - \delta)$
- $\sigma > 1$: $g^* = \frac{r - \delta}{\sigma'}$
- $\sigma = 1$: specific
Asymptotic results

Asymptotic growth rate

- $\sigma < 1$: $g^*_\infty = \sigma(r - \delta)$
- $\sigma > 1$: $g^*_\infty = \frac{r-\delta}{\sigma'}$
- $\sigma = 1$: specific

Asymptotic ecological discount rate

- $\sigma < 1$: $B^*_\infty = \delta$
- $\sigma > 1$: $B^*_\infty = (1 - \frac{1}{\sigma\sigma'})r + \frac{1}{\sigma\sigma'}\delta$
- $\sigma = 1$: specific
Comments

- Elasticity of substitution between the two goods is the essential parameter.
- $\sigma > 1$: the asymptotic growth is not affected by the consideration of environmental issues
- $\sigma < 1$: In the long run, environmental issues are primordial and $B^* = \delta$!
- Generalizations are available: Formulae can be derived when \bar{y} decreases with time.
- The discontinuity may seem cumbersome, we will see that it is not a problem.
Finite-time results

Ecological Discount Rate and Precautionary Principle
Olivier Guéant

Introduction
Motivations
Framework

The model
Setup of the model
Discount rates
Optimization problem

Results
Asymptotic results
Non-asymptotic results
Poor/Rich countries

Precautionary principle
Underlying ideas
Weak PP
Strong PP

∀T < ∞, σ ̂ → B∗(T; σ) is continuous.
The discontinuity is just a problem of double limit.

Shape of the yield curve
If σ > 1 (resp. σ < 1) and σ < 1 then T ̂ → B∗(T) is decreasing (resp. increasing) and converges towards δ.
If σ > 1 (resp. σ < 1) and σ > 1 then T ̂ → B∗(T) is increasing (resp. decreasing) and converges towards \left(\frac{1}{\sigma} - \frac{1}{\sigma} \right)^{-1} (r + 1).
The most relevant case being σ > 1, this result advocates for low discount rates even in finite horizon.
Finite-time results

Continuity

\[\forall T < \infty, \sigma \mapsto B^*(T; \sigma) \text{ is continuous.} \]

The discontinuity is just a problem of double limit.
Finite-time results

Continuity

\[\forall T < \infty, \sigma \mapsto B^*(T; \sigma) \text{ is continuous.} \]

The discontinuity is just a problem of double limit.

Shape of the yield curve

- If \(\sigma \sigma' > 1 \) (resp. \(\sigma \sigma' < 1 \)) and \(\sigma < 1 \) then \(T \mapsto B^*(T) \) is decreasing (resp. increasing) and converges towards \(\delta \).
- If \(\sigma \sigma' > 1 \) (resp. \(\sigma \sigma' < 1 \)) and \(\sigma > 1 \) then \(T \mapsto B^*(T) \) is increasing (resp. decreasing) and converges towards

\[
\left(1 - \frac{1}{\sigma \sigma'}\right) r + \frac{1}{\sigma \sigma'} \delta
\]

The most relevant case being \(\sigma \sigma' > 1 \), this result advocates for low discount rates even in finite horizon.
Simulations

Figure: Yield curve example ($\sigma = 0.8$, $\sigma' = 1.5$, $r = 2\%$, $\delta = 0.1\%$)
Simulations

Figure: Yield curve example ($\sigma = 1.2$, $\sigma' = 1.5$, $r = 2\%$, $\delta = 0.1\%$)
Bounds for perpetuity bonds I

- Yield curves contain all the information.
- It may be interesting to have a unique figure.
- Environmental perpetuity:

\[m = \sum_{T=1}^{\infty} \exp(-B^*(T)T) \]

- Interpretation: if I’m ready to pay \(x \) to avoid an environmental damage for this year, I’m ready to pay \(mx \) to avoid the same damage forever.
Bounds for perpetuity bonds II

Lower bounds for m

Let’s assume $\sigma \sigma' > 1$ (we do not assume anything on σ itself).

Then:

$$m > \frac{1}{r(1 - \frac{1}{\sigma \sigma' }) + \delta \frac{1}{\sigma \sigma'}}$$

Remark: if $\sigma \sigma' < 1$, then $m > \frac{1}{\delta}$.

Example: ($r = 3\%$, $\delta = 1\%$ and $\sigma' = 1.5$)

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>$\sigma_h = 1.2$</td>
<td>$\sigma_l = 0.8$</td>
</tr>
<tr>
<td>Theoretic inferior bound for m</td>
<td>52.94</td>
<td>75</td>
</tr>
<tr>
<td>Actual m</td>
<td>61.49</td>
<td>86.68</td>
</tr>
</tbody>
</table>
Investment in the environment

- Concept of ecological “return”.
- Unitary initial investment \Rightarrow improvement Φ of the “environmental” quality at time T.
- $\Phi = e^{\Omega^*(T)T}$ is just socially profitable $\iff e^{-B^*(T)T} e^{\Omega^*(T)T} (\frac{x_0}{y})^{1/\sigma} = 1$:
 $\Omega^*(T) = B^*(T) - (\frac{1}{T})(1/\sigma) \ln(\frac{x_0}{y})$
- Same asymptotic behavior. Different “yield” curves.
- It encourages subsidies (Mediterranean Sea).
Figure: Yield Curve for Ω ($\sigma = 0.8$, $\sigma' = 1.5$, $r = 2\%$, $\delta = 0.1\%$, $\bar{y} \ll x_0^*$)
Figure: Yield Curve for Ω ($\sigma = 0.8$, $\sigma' = 1.5$, $r = 2\%$, $\delta = 0.1\%$, $\bar{y} \gg x_0^*$)
Figure: Yield Curve for Ω ($\sigma = 0.8$, $\sigma' = 1.5$, $r = 2\%$, $\delta = 0.1\%$, \(\bar{y} \sim x_0^*\))
Introduction

The model

Results

Precautionary principle
 - Underlying ideas
 - Weak PP
 - Strong PP
What is risk?

- Large literature on fat tails, extreme events, ...
- In the evaluation of a risk by $\mathbb{E}[u(X)]$, the risk is usually linked to X.
- For climate change, we argue that the risk is twofold:
 - Classic risk: extent or amplitude of the consequences of climate change.
 ⇒ X
 - Welfare risk: Will environment turn out to be really important for us, once a catastrophe occurred?
 ⇒ u

σ is basically unknown before an event concerning environment.
We consider a deterministic (to simplify) event at time τ.

σ can be $\sigma_l < 1$ or $\sigma_h > 1$ and we discover its value at time τ.

Before time τ, we attribute a priori beliefs p and $1 - p$.

New optimization problem

$$\sum_{t=0}^{\tau-1} e^{-\delta t} [pV(\sigma_l; x_t, \bar{y}) + (1 - p)V(\sigma_h; x_t, \bar{y})] + p\mathcal{U}(\alpha_\tau, \sigma_l) + (1 - p)\mathcal{U}(\alpha_\tau, \sigma_h)$$

where $\mathcal{U}(\alpha, \sigma) = \text{Max}_{(x_t, y_t)_{t \geq \tau}} \sum_{t=\tau}^{\infty} e^{-\delta t} V(\sigma; x_t, y_t)$

(Same constraints)
Asymptotically, the smallest possible rate applies. More formally:

Weak precautionary principle

Let’s assume $p \in (0; 1)$ and $\sigma_h \sigma' > 1$, then B_∞^* does not depend on p:

$$B_\infty^* = \delta$$

This is not surprising but it doesn’t say anything on $B^*(T)$ for finite T’s.
\(p \mapsto m(p) \)

We can go back to \(m \) that gathers information on the \(B(T) \)'s in a meaningful way.
We have the following result for \(\sigma_h\sigma' > 1 \) and \(\sigma_l\sigma' > 1 \) (to simplify formulae):

Strong precautionary principle

Let’s introduce
\[
a(h) = r(1 - \frac{1}{\sigma_h\sigma'}) + \delta \frac{1}{\sigma_h\sigma'}
\]
\[
a(l) = r(1 - \frac{1}{\sigma_l\sigma'}) + \delta \frac{1}{\sigma_l\sigma'}.
\]

We have:

\[
m > e^{-B^*(\tau)\tau} \left[\frac{pN^*(\tau)\frac{1}{a(l)}}{pN^*(\tau) + (1-p)} + (1-p)\frac{1}{a(h)} \right]
\]

where \(N^*(\tau) \) grows exponentially with \(\tau \).

⇒ Concavity property, well illustrated by simulations
Simulations \Rightarrow Strong Precautionary Principle

Figure: Value of m. $\sigma \in \{0.8; 1.2\}$ is revealed at $\tau = 100$. $r = 3\%, \delta = 1\%, \sigma' = 1.5$